Package: BsMD 2023.920
BsMD: Bayes Screening and Model Discrimination
Bayes screening and model discrimination follow-up designs.
Authors:
BsMD_2023.920.tar.gz
BsMD_2023.920.zip(r-4.5)BsMD_2023.920.zip(r-4.4)BsMD_2023.920.zip(r-4.3)
BsMD_2023.920.tgz(r-4.4-x86_64)BsMD_2023.920.tgz(r-4.4-arm64)BsMD_2023.920.tgz(r-4.3-x86_64)BsMD_2023.920.tgz(r-4.3-arm64)
BsMD_2023.920.tar.gz(r-4.5-noble)BsMD_2023.920.tar.gz(r-4.4-noble)
BsMD_2023.920.tgz(r-4.4-emscripten)BsMD_2023.920.tgz(r-4.3-emscripten)
BsMD.pdf |BsMD.html✨
BsMD/json (API)
# Install 'BsMD' in R: |
install.packages('BsMD', repos = c('https://ejbz.r-universe.dev', 'https://cloud.r-project.org')) |
Datasets:
- BM86.data - Data sets in Box and Meyer
- BM93.e1.data - Example 1 data in Box and Meyer
- BM93.e2.data - Example 2 data in Box and Meyer
- BM93.e3.data - Example 3 data in Box and Meyer
- PB12Des - 12-run Plackett-Burman Design Matrix
- Reactor.data - Reactor Experiment Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:50739f5190. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 09 2024 |
R-4.5-win-x86_64 | OK | Oct 09 2024 |
R-4.5-linux-x86_64 | OK | Oct 09 2024 |
R-4.4-win-x86_64 | OK | Oct 09 2024 |
R-4.4-mac-x86_64 | OK | Oct 09 2024 |
R-4.4-mac-aarch64 | OK | Oct 09 2024 |
R-4.3-win-x86_64 | OK | Oct 09 2024 |
R-4.3-mac-x86_64 | OK | Oct 09 2024 |
R-4.3-mac-aarch64 | OK | Oct 09 2024 |
Exports:BsProbDanielPlotLenthPlotMD
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Bayes screening and model discrimination follow-up designs | BsMD-package BsMD |
Data sets in Box and Meyer (1986) | BM86.data |
Example 1 data in Box and Meyer (1993) | BM93.e1.data |
Example 2 data in Box and Meyer (1993) | BM93.e2.data |
Example 3 data in Box and Meyer (1993) | BM93.e3.data |
Posterior Probabilities from Bayesian Screening Experiments | BsProb |
Normal Plot of Effects | DanielPlot |
Lenth's Plot of Effects | LenthPlot |
Best Model Discrimination (MD) Follow-Up Experiments | MD |
12-run Plackett-Burman Design Matrix | PB12Des |
Plotting of Posterior Probabilities from Bayesian Screening | plot.BsProb |
Printing Posterior Probabilities from Bayesian Screening | print.BsProb |
Print Best MD Follow-Up Experiments | print.MD |
Reactor Experiment Data | Reactor.data |
Summary of Posterior Probabilities from Bayesian Screening | summary.BsProb |
Summary of Best MD Follow-Up Experiments | summary.MD |